Functions

Gamma Function

SpecialFunctions.gammaFunction
gamma(z)

Compute the gamma function for complex $z$, defined by

\[\Gamma(z) := \begin{cases} n! & \text{for} \quad z = n+1 \;, n = 0,1,2,\dots \\ \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t & \text{for} \quad \Re(z) > 0 \end{cases}\]

and by analytic continuation in the whole complex plane.

Examples

julia> gamma(0)
Inf

julia> gamma(1)
1.0

julia> gamma(2)
1.0

julia> gamma(0.5)^2 ≈ π
true

julia> gamma(4 + 1) == prod(1:4) == factorial(4)
true

External links: DLMF 5.2.1, Wikipedia.

See also: loggamma(z) for $\log \Gamma(z)$ and gamma(a,z) for the upper incomplete gamma function $\Gamma(a,z)$.

Implementation by

  • Float: C standard math library libm.
  • Complex: by exp(loggamma(z)).
  • BigFloat: C library for multiple-precision floating-point MPFR
source
gamma(a,x)

Returns the upper incomplete gamma function

\[\Gamma(a,x) = \int_x^\infty t^{a-1} e^{-t} \mathrm{d}t\]

supporting arbitrary real or complex a and x.

(The ordinary gamma function gamma(x) corresponds to $\Gamma(a) = \Gamma(a,0)$. See also the gamma_inc function to compute both the upper and lower ($\gamma(a,x)$) incomplete gamma functions scaled by $\Gamma(a)$.

External links: DLMF 8.2.2, Wikipedia

source
SpecialFunctions.loggammaFunction
loggamma(x)

Computes the logarithm of gamma for given x. If x is a Real, then it throws a DomainError if gamma(x) is negative.

If x is complex, then exp(loggamma(x)) matches gamma(x) (up to floating-point error), but loggamma(x) may differ from log(gamma(x)) by an integer multiple of $2πi$ (i.e. it may employ a different branch cut).

See also logabsgamma for real x.

source
loggamma(a,x)

Returns the log of the upper incomplete gamma function gamma(a,x):

\[\log \Gamma(a,x) = \log \int_x^\infty t^{a-1} e^{-t} \mathrm{d}t\]

supporting arbitrary real or complex a and x.

If a and/or x is complex, then exp(loggamma(a,x)) matches gamma(a,x) (up to floating-point error), but loggamma(a,x) may differ from log(gamma(a,x)) by an integer multiple of $2\pi i$ (i.e. it may employ a different branch cut).

See also loggamma(x).

source
SpecialFunctions.gamma_incFunction
gamma_inc(a,x,IND=0)

Returns a tuple $(p, q)$ where $p + q = 1$, and $p = P(a,x)$ is the Incomplete gamma function ratio given by:

\[P(a,x) = \frac{1}{\Gamma (a)} \int_{0}^{x} e^{-t}t^{a-1} \mathrm{d}t.\]

and $q = Q(a,x)$ is the Incomplete gamma function ratio given by:

\[Q(a,x) = \frac{1}{\Gamma (a)} \int_{x}^{\infty} e^{-t}t^{a-1} \mathrm{d}t.\]

In terms of these, the lower incomplete gamma function is $\gamma(a,x) = P(a,x) \Gamma(a)$ and the upper incomplete gamma function is $\Gamma(a,x) = Q(a,x) \Gamma(a)$.

IND ∈ [0,1,2] sets accuracy: IND=0 means 14 significant digits accuracy, IND=1 means 6 significant digit, and IND=2 means only 3 digit accuracy.

External links: DLMF 8.2.4, Wikipedia

See also gamma(z), gamma_inc_inv(a,p,q)

source
SpecialFunctions.gammaxFunction
gammax(x)

\[\operatorname{gammax}(x) = \begin{cases} e^{\operatorname{stirling}(x)}\quad\quad\quad \text{if} \quad x>0,\\ \dfrac{\Gamma(x)}{\sqrt{2 \pi}e^{-x + (x-0.5)\log(x)}},\quad \text{if} \quad x\leq 0. \end{cases}\]

source
SpecialFunctions.rgamma1pm1Function
rgamma1pm1(a)

Computation of $1/\Gamma(a+1) - 1$ for -0.5<=a<=1.5: $1/\Gamma (a+1) - 1$.

Uses the relation gamma(a+1) = a*gamma(a).

source
SpecialFunctions.gamma_inc_cfFunction
gamma_inc_cf(a, x, ind)

Computes $P(a,x)$ by continued fraction expansion given by:

\[R(a,x) \cdot \cfrac{1}{1-\cfrac{z}{a+1+\cfrac{z}{a+2-\cfrac{(a+1)z}{a+3+\cfrac{2z}{a+4-\cfrac{(a+2)z}{a+5+\cfrac{3z}{a+6-\ddots}}}}}}}\]

Used when 1 <= a <= BIG and x < x0.

External links: DLMF 8.9.2

See also: gamma_inc(a,x,ind)

source
SpecialFunctions.gamma_inc_minimaxFunction
gamma_inc_minimax(a,x,z)

Compute $P(a,x)$ using minimax approximations given by :

\[1/2 * \operatorname{erfc}(\sqrt{y}) - e^{-y}/\sqrt{2\pi a} ⋅ T(a,\lambda)\]

where

\[T(a,\lambda) = \sum_{0}^{N} c_{k}(z)a^{-k}\]

This is a higher accuracy approximation of Temme expansion, which deals with the region near a ≈ x with a large. Refer Appendix F in the paper for the extensive set of coefficients calculated using Brent's multiple precision arithmetic(set at 50 digits) in

Brent, R. P. A Fortran multiple-precision arithmetic package, ACM Trans. Math. Softw. 4(1978), 57-70, doi: 10.1145/355769.355775.

External links: DLMF 8.12.8

See also: gamma_inc(a,x,ind)

source
SpecialFunctions.gamma_inc_taylor_xFunction
gamma_inc_taylor_x(a,x,ind)

Computes $P(a,x)$ based on Taylor expansion of $P(a,x)/x^a$ given by:

\[J = -a * \sum_{1}^{\infty} (-x)^{n}/((a+n)n!)\]

and $P(a,x)/x^a$ is given by:

\[(1 - J) / \Gamma(a+1)\]

resulting from term-by-term integration of gamma_inc(a,x,ind). This is used when a < 1 and x < 1.1 - Refer Eqn (9) in the paper.

See also: gamma_inc(a,x,ind)

source
SpecialFunctions.gamma_inc_temmeFunction
gamma_inc_temme(a, x, z)

Compute $P(a,x)$ using Temme's expansion given by :

\[1/2 * \operatorname{erfc}(\sqrt{y}) - e^{-y}/\sqrt{2\pi a} ⋅ T(a,\lambda)\]

where

\[T(a,\lambda) = \sum_{0}^{N} c_{k}(z)a^{-k}\]

This mainly solves the problem near the region when a ≈ x with a large, and is a lower accuracy version of the minimax approximation.

External links: DLMF 8.12.8

See also: gamma_inc(a,x,ind)

source
SpecialFunctions.gamma_inc_temme_1Function
gamma_inc_temme_1(a, x, z, ind)

Computes $P(a,x)$ using simplified Temme expansion near $y=0$ by:

\[E(y) - (1 - y)/\sqrt{2\pi a} ⋅ T(a,\lambda)\]

where

\[E(y) = 1/2 - (1 - y/3) ⋅ \sqrt{y/\pi}\]

Used instead of it's previous function when $\sigma \leq e_{0}/\sqrt{a}$.

External links: DLMF 8.12.8

source
SpecialFunctions.gamma_inc_inv_psmallFunction
gamma_inc_inv_psmall(a, logr)

Compute x0 - initial approximation when p is small. Here we invert the series in Eqn (2.20) in the paper and write the inversion problem as:

\[x = r\left[1 + a\sum_{k=1}^{\infty}\frac{(-x)^{n}}{(a+n)n!}\right]^{-1/a},\]

where $r = (p\Gamma(1+a))^{1/a}$ Inverting this relation we obtain $x = r + \sum_{k=2}^{\infty} c_{k} r^{k}$.

source
SpecialFunctions.gamma_inc_inv_qsmallFunction
gamma_inc_inv_qsmall(a, q, qgammaxa)

Compute x0 - initial approximation when q is small from $e^{-x_{0}} x_{0}^{a} = q \Gamma(a)$. Asymptotic expansions Eqn (2.29) in the paper is used here and higher approximations are obtained using

\[x \sim x_{0} - L + b \sum_{k=1}^{\infty} d_{k}/x_{0}^{k}\]

where $b = 1-a$, $L = \ln{x_0}$.

source
SpecialFunctions.gamma_inc_inv_alargeFunction
gamma_inc_inv_alarge(a, minpq, pcase)

Compute x0 - initial approximation when a is large. The inversion problem is rewritten as:

\[0.5 \operatorname{erfc}(\eta \sqrt{a/2}) + R_{a}(\eta) = q\]

For large values of a we can write: $\eta(q,a) = \eta_{0}(q,a) + \epsilon(\eta_{0},a)$ and it is possible to expand:

\[\epsilon(\eta_{0},a) = \epsilon_{1}(\eta_{0},a)/a + \epsilon_{2}(\eta_{0},a)/a^{2} + \epsilon_{3}(\eta_{0},a)/a^{3} + \cdots\]

which is calculated by coeff1, coeff2 and coeff3 functions below. This returns a tuple (x0,fp), where fp is computed since it's an approximation for the coefficient after inverting the original power series.

source

Beta Function

SpecialFunctions.betaFunction
beta(x, y)

Euler integral of the first kind $\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$.

source
SpecialFunctions.logabsbinomialFunction
logabsbinomial(n, k)

Accurate natural logarithm of the absolute value of the binomial coefficient binomial(n, k) for large n and k near n/2.

Returns a tuple (log(abs(binomial(n,k))), sign(binomial(n,k))).

External links Base.binomial

source
SpecialFunctions.beta_incFunction
beta_inc(a, b, x, y=1-x)

Return a tuple $(I_{x}(a,b), 1-I_{x}(a,b))$ where $I_{x}(a,b)$ is the regularized incomplete beta function given by

\[I_{x}(a,b) = \frac{1}{B(a,b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} \mathrm{d}t,\]

where $B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$.

External links: DLMF 8.17.1, Wikipedia

See also: beta_inc_inv

source
SpecialFunctions.beta_inc_invFunction
beta_inc_inv(a, b, p, q=1-p)

Return a tuple (x, 1-x) where x satisfies $I_{x}(a, b) = p$, i.e., x is the inverse of the regularized incomplete beta function $I_{x}(a, b)$.

See also: beta_inc

source
SpecialFunctions.ncbetaFunction
ncbeta(a,b,lambda,x)

Compute the CDF of the noncentral beta distribution given by

\[I_{x}(a,b; \lambda) = \sum_{j=0}^{\infty} q(\lambda/2,j) I_{x}(a+j,b;0)\]

For $\lambda < 54$ : algorithm suggested by Lenth(1987) in ncbeta_tail(a,b,lambda,x). Else for $\lambda \geq 54$: modification in Chattamvelli(1997) in ncbeta_poisson(a,b,lambda,x) by using both forward and backward recurrences.

source
SpecialFunctions.ncbeta_poissonFunction
ncbeta_poisson(a,b,lambda,x)

Compute CDF of noncentral beta if lambda >= 54 using: First $\lambda/2$ is calculated and the Poisson term is calculated using $P(j-1) = j/\lambda P(j)$ and $P(j+1) = \lambda/(j+1) P(j)$. Then backward recurrences are used until either the Poisson weights fall below errmax or iterlo is reached.

\[I_{x}(a+j-1,b) = I_{x}(a+j,b) + \Gamma(a+b+j-1)/\Gamma(a+j)\Gamma(b)x^{a+j-1}(1-x)^{b}\]

Then forward recurrences are used until error bound falls below errmax.

\[I_{x}(a+j+1,b) = I_{x}(a+j,b) - \Gamma(a+b+j)/\Gamma(a+j)\Gamma(b)x^{a+j}(1-x)^{b}\]

source
SpecialFunctions.ncbeta_tailFunction
ncbeta_tail(x,a,b,lambda)

Compute tail of the noncentral beta distribution. Uses the recursive relation

\[I_{x}(a,b+1;0) = I_{x}(a,b;0) - \Gamma(a+b)/\Gamma(a+1)\Gamma(b) x^a (1-x)^b\]

and $\Gamma(a+1) = a\Gamma(a)$ given in DLMF 8.17.21.

source

Utilities

SpecialFunctions.coeff1Function

Computing the first coefficient for the expansion:

\[\epsilon (\eta_{0},a) = \epsilon_{1}(\eta_{0},a)/a + \epsilon_{2}(\eta_{0},a)/a^{2} + \epsilon_{3}(\eta_{0},a)/a^{3}\]

Refer Eqn (3.12) in the paper

source
SpecialFunctions.coeff2Function

Computing the second coefficient for the expansion:

\[\epsilon (\eta_{0},a) = \epsilon_{1} (\eta_{0},a)/a + \epsilon_{2} (\eta_{0},a)/a^{2} + \epsilon_{3} (\eta_{0},a)/a^{3}\]

Refer Eqn (3.12) in the paper

source
SpecialFunctions.coeff3Function

Computing the third and last coefficient for the expansion:

\[\epsilon(\eta_{0},a) = \epsilon_{1}(\eta_{0},a)/a + \epsilon_{2}(\eta_{0},a)/a^{2} + \epsilon_{3}(\eta_{0},a)/a^{3}\]

Refer Eqn (3.12) in the paper

source
SpecialFunctions.ncFFunction
ncF(x,v1,v2,lambda)

Compute CDF of noncentral F distribution given by:

\[F(x, v_1, v_2; \lambda) = I_{v_1 x/(v_1 x + v_2)}(v_1/2, v_2/2; \lambda)\]

where $I_{x}(a,b; \lambda)$ is the noncentral beta function computed above.

External links: Wikipedia

source

Exponential and Trigonometric Integrals

SpecialFunctions.expintFunction
expint(z)
expint(ν, z)

Computes the exponential integral

\[\operatorname{E}_\nu(z) = \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t.\]

If $\nu$ is not specified, $\nu=1$ is used. Arbitrary complex $\nu$ and $z$ are supported.

External links: DLMF 8.19, Wikipedia

source
SpecialFunctions.expintiFunction
expinti(x::Real)

Computes the exponential integral function

\[\operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t,\]

which is equivalent to $-\Re[\operatorname{E}_1(-x)]$ where $\operatorname{E}_1$ is the expint function.

source
SpecialFunctions.expintxFunction
expintx(z)
expintx(ν, z)

Computes the scaled exponential integral

\[\exp(z) \operatorname{E}_\nu(z) = e^z \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t.\]

If $\nu$ is not specified, $\nu = 1$ is used. Arbitrary complex $\nu$ and $z$ are supported.

See also: expint(ν, z)

source
SpecialFunctions.sinintFunction
sinint(x)

Compute the sine integral function of $x$, defined by

\[\operatorname{Si}(x) := \int_0^x \frac{\sin t}{t} \, \mathrm{d}t \quad \text{for} \quad x \in \mathbb{R} \,.\]

External links: DLMF 6.2.9, Wikipedia.

See also: cosint(x).

Implementation

Using the rational approximants tabulated in:

A.J. MacLeod, "Rational approximations, software and test methods for sine and cosine integrals", Numer. Algor. 12, pp. 259–272 (1996). https://doi.org/10.1007/BF02142806, https://link.springer.com/article/10.1007/BF02142806.

Note: the second zero of $\text{Ci}(x)$ has a typo that is fixed: $r_1 = 3.38418 0422\mathbf{8} 51186 42639 78511 46402$ in the article, but is in fact: $r_1 = 3.38418 0422\mathbf{5} 51186 42639 78511 46402$.

source
SpecialFunctions.cosintFunction
cosint(x)

Compute the cosine integral function of $x$, defined by

\[\operatorname{Ci}(x) := \gamma + \log x + \int_0^x \frac{\cos (t) - 1}{t} \, \mathrm{d}t \quad \text{for} \quad x > 0 \,,\]

where $\gamma$ is the Euler-Mascheroni constant.

External links: DLMF 6.2.13, Wikipedia.

See also: sinint(x).

Implementation

Using the rational approximants tabulated in:

A.J. MacLeod, "Rational approximations, software and test methods for sine and cosine integrals", Numer. Algor. 12, pp. 259–272 (1996). https://doi.org/10.1007/BF02142806, https://link.springer.com/article/10.1007/BF02142806.

Note: the second zero of $\text{Ci}(x)$ has a typo that is fixed: $r_1 = 3.38418 0422\mathbf{8} 51186 42639 78511 46402$ in the article, but is in fact: $r_1 = 3.38418 0422\mathbf{5} 51186 42639 78511 46402$.

source

Error Functions, Dawson’s and Fresnel Integrals

SpecialFunctions.erfcFunction
erfc(x)

Compute the complementary error function of $x$, defined by

\[\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty \exp(-t^2) \; \mathrm{d}t \quad \text{for} \quad x \in \mathbb{C} \, .\]

This is the accurate version of 1-erf(x) for large $x$.

External links: DLMF 7.2.2, Wikipedia.

See also: erf(x).

Implementation by

  • Float32/Float64: C standard math library libm.
  • BigFloat: C library for multiple-precision floating-point MPFR
source
SpecialFunctions.logerfFunction
logerf(x, y)

Compute the natural logarithm of two-argument error function. This is an accurate version of log(erf(x, y)), which works for large x, y.

External links: Wikipedia.

See also: erf(x,y).

source
SpecialFunctions.erfcinvFunction
erfcinv(x)

Compute the inverse error complementary function of a real $x$, that is

\[\operatorname{erfcinv}(x) = \operatorname{erfc}^{-1}(x) \quad \text{for} \quad x \in \mathbb{R} \, .\]

External links: Wikipedia.

See also: erfc(x).

Implementation

Using the rational approximants tabulated in:

J. M. Blair, C. A. Edwards, and J. H. Johnson, "Rational Chebyshev approximations for the inverse of the error function", Math. Comp. 30, pp. 827–830 (1976). https://doi.org/10.1090/S0025-5718-1976-0421040-7, http://www.jstor.org/stable/2005402

combined with Newton iterations for BigFloat.

source
SpecialFunctions.erfcxFunction
erfcx(x)

Compute the scaled complementary error function of $x$, defined by

\[\operatorname{erfcx}(x) = e^{x^2} \operatorname{erfc}(x) \quad \text{for} \quad x \in \mathbb{C} \, .\]

This is the accurate version of $e^{x^2} \operatorname{erfc}(x)$ for large $x$. Note also that $\operatorname{erfcx}(-ix)$ computes the Faddeeva function w(x).

External links: DLMF 7.2.3, Wikipedia.

See also: erfc(x).

Implementation by

  • Float32/Float64: C standard math library libm.
  • BigFloat: MPFR has an open TODO item for this function until then, we use DLMF 7.12.1 for the tail.
source
SpecialFunctions.logerfcFunction
logerfc(x)

Compute the natural logarithm of the complementary error function of $x$, that is

\[\operatorname{logerfc}(x) = \ln(\operatorname{erfc}(x)) \quad \text{for} \quad x \in \mathbb{R} \, .\]

This is the accurate version of $\ln(\operatorname{erfc}(x))$ for large $x$.

External links: Wikipedia.

See also: erfcx(x).

Implementation

Based on the erfc(x) and erfcx(x) functions.

source
SpecialFunctions.logerfcxFunction
logerfcx(x)

Compute the natural logarithm of the scaled complementary error function of $x$, that is

\[\operatorname{logerfcx}(x) = \ln(\operatorname{erfcx}(x)) \quad \text{for} \quad x \in \mathbb{R} \, .\]

This is the accurate version of $\ln(\operatorname{erfcx}(x))$ for large and negative $x$.

External links: Wikipedia.

See also: erfcx(x).

Implementation

Based on the erfc(x) and erfcx(x) functions.

source
SpecialFunctions.erfiFunction
erfi(x)

Compute the imaginary error function of $x$, defined by

\[\operatorname{erfi}(x) = -i \operatorname{erf}(ix) \quad \text{for} \quad x \in \mathbb{C} \, .\]

External links: Wikipedia.

See also: erf(x).

Implementation by

  • Float32/Float64: C standard math library libm.
source
SpecialFunctions.erfinvFunction
erfinv(x)

Compute the inverse error function of a real $x$, that is

\[\operatorname{erfinv}(x) = \operatorname{erf}^{-1}(x) \quad \text{for} \quad x \in \mathbb{R} \, .\]

External links: Wikipedia.

See also: erf(x).

Implementation

Using the rational approximants tabulated in:

J. M. Blair, C. A. Edwards, and J. H. Johnson, "Rational Chebyshev approximations for the inverse of the error function", Math. Comp. 30, pp. 827–830 (1976). https://doi.org/10.1090/S0025-5718-1976-0421040-7, http://www.jstor.org/stable/2005402

combined with Newton iterations for BigFloat.

source
SpecialFunctions.dawsonFunction
dawson(x)

Compute the Dawson function (scaled imaginary error function) of $x$, defined by

\[\operatorname{dawson}(x) = \frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x) \quad \text{for} \quad x \in \mathbb{C} \, .\]

This is the accurate version of $\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)$ for large $x$.

External links: DLMF 7.2.5, Wikipedia.

See also: erfi(x).

Implementation by

  • Float32/Float64: C standard math library libm.
source
SpecialFunctions.faddeevaFunction
faddeeva(z)

Compute the Faddeeva function of complex z, defined by $e^{-z^2} \operatorname{erfc}(-iz)$. Note that this function, also named w (original Faddeeva package) or wofz (Scilab package), is equivalent to $\operatorname{erfcx}(-iz)$.

source

Bessel Functions

SpecialFunctions.sphericalbesseljFunction
sphericalbesselj(nu, x)

Spherical bessel function of the first kind at order nu, $j_ν(x)$. This is the non-singular solution to the radial part of the Helmholz equation in spherical coordinates.

source
SpecialFunctions.sphericalbesselyFunction
sphericalbessely(nu, x)

Spherical bessel function of the second kind at order nu, $y_ν(x)$. This is the singular solution to the radial part of the Helmholz equation in spherical coordinates. Sometimes known as a spherical Neumann function.

source
SpecialFunctions.besselhxFunction
besselhx(nu, [k=1,] z)

Compute the scaled Hankel function $\exp(∓iz) H_ν^{(k)}(z)$, where $k$ is 1 or 2, $H_ν^{(k)}(z)$ is besselh(nu, k, z), and $∓$ is $-$ for $k=1$ and $+$ for $k=2$. k defaults to 1 if it is omitted.

The reason for this function is that $H_ν^{(k)}(z)$ is asymptotically proportional to $\exp(∓iz)/\sqrt{z}$ for large $|z|$, and so the besselh function is susceptible to overflow or underflow when z has a large imaginary part. The besselhx function cancels this exponential factor (analytically), so it avoids these problems.

External links: DLMF 10.2, Wikipedia

See also: besselh

source
SpecialFunctions.jincFunction
jinc(x)

Bessel function of the first kind divided by x. Following convention:

\[\operatorname{jinc}{x} = \frac{2 J_1({\pi x})}{\pi x}.\]

Sometimes known as sombrero or besinc function.

External links: Wikipedia

source

Elliptic Integrals

SpecialFunctions.ellipkFunction
ellipk(m)

Computes Complete Elliptic Integral of 1st kind $K(m)$ for parameter $m$ given by

\[\operatorname{ellipk}(m) = K(m) = \int_0^{ \frac{\pi}{2} } \frac{1}{\sqrt{1 - m \sin^2 \theta}} \, \mathrm{d}\theta \quad \text{for} \quad m \in \left( -\infty, 1 \right] \, .\]

External links: DLMF 19.2.8, Wikipedia.

See also: ellipe(m).

Arguments

  • m: parameter $m$, restricted to the domain $(-\infty,1]$, is related to the elliptic modulus $k$ by $k^2=m$ and to the modular angle $\alpha$ by $k = \sin \alpha$.

Implementation

Using piecewise approximation polynomial as given in

'Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions', Fukushima, Toshio. (2014). F09-FastEI. Celest Mech Dyn Astr, DOI 10.1007/s10569-009-9228-z, https://pdfs.semanticscholar.org/8112/c1f56e833476b61fc54d41e194c962fbe647.pdf

For $m<0$, followed by

Fukushima, Toshio. (2014). 'Precise, compact, and fast computation of complete elliptic integrals by piecewise minimax rational function approximation'. Journal of Computational and Applied Mathematics. 282. DOI 10.13140/2.1.1946.6245., https://www.researchgate.net/publication/267330394

As suggested in this paper, the domain is restricted to $(-\infty,1]$.

source
SpecialFunctions.ellipeFunction
ellipe(m)

Computes Complete Elliptic Integral of 2nd kind $E(m)$ for parameter $m$ given by

\[\operatorname{ellipe}(m) = E(m) = \int_0^{ \frac{\pi}{2} } \sqrt{1 - m \sin^2 \theta} \, \mathrm{d}\theta \quad \text{for} \quad m \in \left( -\infty, 1 \right] .\]

External links: DLMF 19.2.8, Wikipedia.

See also: ellipk(m).

Arguments

  • m: parameter $m$, restricted to the domain $(-\infty,1]$, is related to the elliptic modulus $k$ by $k^2=m$ and to the modular angle $\alpha$ by $k=\sin \alpha$.

Implementation

Using piecewise approximation polynomial as given in

'Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions', Fukushima, Toshio. (2014). F09-FastEI. Celest Mech Dyn Astr, DOI 10.1007/s10569-009-9228-z, https://pdfs.semanticscholar.org/8112/c1f56e833476b61fc54d41e194c962fbe647.pdf

For $m<0$, followed by

Fukushima, Toshio. (2014). 'Precise, compact, and fast computation of complete elliptic integrals by piecewise minimax rational function approximation'. Journal of Computational and Applied Mathematics. 282. DOI 10.13140/2.1.1946.6245., https://www.researchgate.net/publication/267330394

As suggested in this paper, the domain is restricted to $(-\infty,1]$.

source
SpecialFunctions.zetaFunction
zeta(s, z)

Generalized zeta function defined by

\[\zeta(s, z) = \sum_{k=0}^\infty \frac{1}{((k+z)^2)^{s/2}},\]

where any term with $k+z = 0$ is excluded. For $\Re z > 0$, this definition is equivalent to the Hurwitz zeta function $\sum_{k=0}^\infty (k+z)^{-s}$.

The Riemann zeta function is recovered as $\zeta(s) = \zeta(s,1)$.

External links: Riemann zeta function, Hurwitz zeta function

source
zeta(s)

Riemann zeta function

\[\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}\quad\text{for}\quad s\in\mathbb{C}.\]

External links: Wikipedia

source