Functions
SpecialFunctions.erf
— Function.erf(x)
Compute the error function of x
, defined by $\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ for arbitrary complex x
.
SpecialFunctions.erfc
— Function.erfc(x)
Compute the complementary error function of x
, defined by $1 - \operatorname{erf}(x)$.
SpecialFunctions.erfcx
— Function.erfcx(x)
Compute the scaled complementary error function of x
, defined by $e^{x^2} \operatorname{erfc}(x)$. Note also that $\operatorname{erfcx}(-ix)$ computes the Faddeeva function $w(x)$.
SpecialFunctions.erfi
— Function.erfi(x)
Compute the imaginary error function of x
, defined by $-i \operatorname{erf}(ix)$.
SpecialFunctions.dawson
— Function.dawson(x)
Compute the Dawson function (scaled imaginary error function) of x
, defined by $\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)$.
SpecialFunctions.erfinv
— Function.erfinv(x)
Compute the inverse error function of a real x
, defined by $\operatorname{erf}(\operatorname{erfinv}(x)) = x$.
SpecialFunctions.erfcinv
— Function.erfcinv(x)
Compute the inverse error complementary function of a real x
, defined by $\operatorname{erfc}(\operatorname{erfcinv}(x)) = x$.
SpecialFunctions.sinint
— Function.sinint(x)
Compute the sine integral function of x
, defined by $\operatorname{Si}(x) := \int_0^x\frac{\sin t}{t} dt$ for real x
.
SpecialFunctions.cosint
— Function.cosint(x)
Compute the cosine integral function of x
, defined by $\operatorname{Ci}(x) := \gamma + \log x + \int_0^x \frac{\cos t - 1}{t} dt$ for real x > 0
, where $\gamma$ is the Euler-Mascheroni constant.
SpecialFunctions.digamma
— Function.digamma(x)
Compute the digamma function of x
(the logarithmic derivative of gamma(x)
).
SpecialFunctions.invdigamma
— Function.invdigamma(x)
Compute the inverse digamma
function of x
.
SpecialFunctions.trigamma
— Function.trigamma(x)
Compute the trigamma function of x
(the logarithmic second derivative of gamma(x)
).
SpecialFunctions.polygamma
— Function.polygamma(m, x)
Compute the polygamma function of order m
of argument x
(the (m+1)
th derivative of the logarithm of gamma(x)
)
SpecialFunctions.airyai
— Function.airyai(x)
Airy function of the first kind $\operatorname{Ai}(x)$.
SpecialFunctions.airyaiprime
— Function.airyaiprime(x)
Derivative of the Airy function of the first kind $\operatorname{Ai}'(x)$.
SpecialFunctions.airyaix
— Function.airyaix(x)
Scaled Airy function of the first kind $\operatorname{Ai}(x) e^{\frac{2}{3} x \sqrt{x}}$. Throws DomainError
for negative Real
arguments.
SpecialFunctions.airyaiprimex
— Function.airyaiprimex(x)
Scaled derivative of the Airy function of the first kind $\operatorname{Ai}'(x) e^{\frac{2}{3} x \sqrt{x}}$. Throws DomainError
for negative Real
arguments.
SpecialFunctions.airybi
— Function.airybi(x)
Airy function of the second kind $\operatorname{Bi}(x)$.
SpecialFunctions.airybiprime
— Function.airybiprime(x)
Derivative of the Airy function of the second kind $\operatorname{Bi}'(x)$.
SpecialFunctions.airybix
— Function.airybix(x)
Scaled Airy function of the second kind $\operatorname{Bi}(x) e^{- \left| \operatorname{Re} \left( \frac{2}{3} x \sqrt{x} \right) \right|}$.
SpecialFunctions.airybiprimex
— Function.airybiprimex(x)
Scaled derivative of the Airy function of the second kind $\operatorname{Bi}'(x) e^{- \left| \operatorname{Re} \left( \frac{2}{3} x \sqrt{x} \right) \right|}$.
SpecialFunctions.besselj0
— Function.besselj0(x)
Bessel function of the first kind of order 0, $J_0(x)$.
SpecialFunctions.besselj1
— Function.besselj1(x)
Bessel function of the first kind of order 1, $J_1(x)$.
SpecialFunctions.besselj
— Function.besselj(nu, x)
Bessel function of the first kind of order nu
, $J_\nu(x)$.
SpecialFunctions.besseljx
— Function.besseljx(nu, x)
Scaled Bessel function of the first kind of order nu
, $J_\nu(x) e^{- | \operatorname{Im}(x) |}$.
SpecialFunctions.bessely0
— Function.bessely0(x)
Bessel function of the second kind of order 0, $Y_0(x)$.
SpecialFunctions.bessely1
— Function.bessely1(x)
Bessel function of the second kind of order 1, $Y_1(x)$.
SpecialFunctions.bessely
— Function.bessely(nu, x)
Bessel function of the second kind of order nu
, $Y_\nu(x)$.
SpecialFunctions.besselyx
— Function.besselyx(nu, x)
Scaled Bessel function of the second kind of order nu
, $Y_\nu(x) e^{- | \operatorname{Im}(x) |}$.
SpecialFunctions.hankelh1
— Function.hankelh1(nu, x)
Bessel function of the third kind of order nu
, $H^{(1)}_\nu(x)$.
SpecialFunctions.hankelh1x
— Function.hankelh1x(nu, x)
Scaled Bessel function of the third kind of order nu
, $H^{(1)}_\nu(x) e^{-x i}$.
SpecialFunctions.hankelh2
— Function.hankelh2(nu, x)
Bessel function of the third kind of order nu
, $H^{(2)}_\nu(x)$.
SpecialFunctions.hankelh2x
— Function.hankelh2x(nu, x)
Scaled Bessel function of the third kind of order nu
, $H^{(2)}_\nu(x) e^{x i}$.
SpecialFunctions.besselh
— Function.besselh(nu, [k=1,] x)
Bessel function of the third kind of order nu
(the Hankel function). k
is either 1 or 2, selecting hankelh1
or hankelh2
, respectively. k
defaults to 1 if it is omitted. (See also besselhx
for an exponentially scaled variant.)
SpecialFunctions.besselhx
— Function.besselhx(nu, [k=1,] z)
Compute the scaled Hankel function $\exp(∓iz) H_ν^{(k)}(z)$, where $k$ is 1 or 2, $H_ν^{(k)}(z)$ is besselh(nu, k, z)
, and $∓$ is $-$ for $k=1$ and $+$ for $k=2$. k
defaults to 1 if it is omitted.
The reason for this function is that $H_ν^{(k)}(z)$ is asymptotically proportional to $\exp(∓iz)/\sqrt{z}$ for large $|z|$, and so the besselh
function is susceptible to overflow or underflow when z
has a large imaginary part. The besselhx
function cancels this exponential factor (analytically), so it avoids these problems.
SpecialFunctions.besseli
— Function.besseli(nu, x)
Modified Bessel function of the first kind of order nu
, $I_\nu(x)$.
SpecialFunctions.besselix
— Function.besselix(nu, x)
Scaled modified Bessel function of the first kind of order nu
, $I_\nu(x) e^{- | \operatorname{Re}(x) |}$.
SpecialFunctions.besselk
— Function.besselk(nu, x)
Modified Bessel function of the second kind of order nu
, $K_\nu(x)$.
SpecialFunctions.besselkx
— Function.besselkx(nu, x)
Scaled modified Bessel function of the second kind of order nu
, $K_\nu(x) e^x$.
SpecialFunctions.eta
— Function.eta(x)
Dirichlet eta function $\eta(s) = \sum^\infty_{n=1}(-1)^{n-1}/n^{s}$.
SpecialFunctions.zeta
— Function.zeta(s, z)
Generalized zeta function $\zeta(s, z)$, defined by the sum $\sum_{k=0}^\infty ((k+z)^2)^{-s/2}$, where any term with $k+z=0$ is excluded. For $\Re z > 0$, this definition is equivalent to the Hurwitz zeta function $\sum_{k=0}^\infty (k+z)^{-s}$. For $z=1$, it yields the Riemann zeta function $\zeta(s)$.
zeta(s)
Riemann zeta function $\zeta(s)$.